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Abstract—Ground-penetrating radar (GPR) data are often 

contaminated by hardware and environmental clutter, which 
significantly affects the accuracy and reliability of target response 
identification. Existing supervised deep learning techniques for 
removing clutter in GPR data require generating a large set of 
clutter-free B-scans as labels for training, which are 
computationally expensive in simulation and unfeasible in real-
world experiments. To tackle this issue, we propose a two-stage 
unsupervised learning-based clutter removal scheme, called 
ULCR-Net, to obtain clutter-free GPR B-scans. In the first stage 
of the proposed scheme, a diffusion model tailored for GPR data 
augmentation is employed to generate a diverse set of raw B-scans 
from the input random noise. With the augmented dataset, the 
second stage of the proposed scheme uses a contrastive learning-
based generative adversarial network to learn and estimate clutter 
patterns in the raw B-scan. The clutter-free B-scan is then 
obtained by subtracting the clutter pattern from the raw B-scan. 
The training of the two-stage network only requires a small set of 
raw B-scans and clutter-only B-scans that are readily available in 
real-world applications. Extensive experiments have been 
conducted to validate the effectiveness of the proposed method. 
Results on simulation and measurement data demonstrate that the 
proposed method has superior clutter removal accuracy and 
generalizability and outperforms existing algebraic techniques 
and supervised learning-based methods with limited training data 
by a large margin. With its high clutter suppression capability and 
low training data requirements, the proposed method is well-
suited to remove clutter and restore target responses in real-world 
GPR applications. Upon paper acceptance, the proposed method’s 
code and dataset will be released at https://github.com/Qiqi-Dai . 
 

Index Terms— Clutter removal, contrastive learning, data 
augmentation, diffusion model, generative adversarial network, 
ground-penetrating radar, unsupervised learning. 
 

I. INTRODUCTION 
ROUND-PENETRATING radar (GPR) has been widely 
used as a non-destructive technique for detecting and 

imaging subsurface objects. However, system and 
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environmental clutter arise from direct coupling between the 
transmitter and receiver, strong reflections from the ground 
surface, and the heterogeneity of the soil environment, which 
hinders the recognition of the target responses in the obtained 
B-scan. Therefore, suppressing clutter while retaining the 
signatures in the GPR B-scan is of great importance for target 
detection and interpretation [1]-[2]. 

Over the years, many conventional algebraic algorithms have 
been investigated to remove clutter in GPR B-scans. The mean 
subtraction (MS) methods [3]-[5] estimate the clutter as the 
average of all the traces and subtract it from the raw GPR B-
scan. Subspace projection methods, including the singular value 
decomposition (SVD) [6]-[7], independent component analysis 
(ICA) [8]-[10], and principal component analysis (PCA) [10]-
[11], decompose the raw B-scan into clutter subspace and target 
subspace based on the strength difference. Low-rank sparse 
matrix decomposition-based methods, such as the robust PCA 
(RPCA) [12]-[13], non-negative matrix factorization (NMF) 
[14], robust NMF (RNMF) [15], and robust autoencoder (RAE) 
[16], divide the raw B-scan into a low-rank matrix containing 
the clutter component and a sparse matrix capturing the target 
component. Space representation-induced methods, such as 
morphological component analysis (MCA) [17] and dictionary 
learning [18]-[19], sparsely differentiate the target and clutter 
components using the dictionaries. However, these 
conventional clutter removal algorithms suffer from several 
limitations. 1) Although they are effective in ideal 
homogeneous subsurface settings, their clutter removal 
accuracy decreases in diverse real-world heterogeneous 
environments, and sometimes they even yield distorted object 
responses. 2) The precise subspace separation is necessary in 
the subspace projection methods, which can be challenging 
when the clutter and target responses have similar strengths. 3) 
The decluttering performance of some of these algorithms 
highly depends on the hyperparameter selection for different 
cases. 4) The iterative computations in the optimization process 
can be time-consuming. 

H. -H. Sun is with the Department of Electrical and Computer Engineering, 
University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, 
United States (e-mail: haihan.sun@wisc.edu). 

M. L. M. Yusof and D. Lee are with the National Parks Board, Singapore 
259569 (e-mails: mohamed_lokman_mohd_yusof@nparks.gov.sg; 
daryl_lee@nparks.gov.sg). 

 

Learning from Clutter: An Unsupervised 
Learning-Based Clutter Removal Scheme for 

GPR B-Scans  
Qiqi Dai, Yee Hui Lee, Senior Member, IEEE, Hai-Han Sun, Jiwei Qian, Mohamed Lokman Mohd 

Yusof, Daryl Lee, and Abdulkadir C. Yucel, Senior Member, IEEE 

G 

https://github.com/Qiqi-Dai


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

Recently, due to the impressive capability of learning and 
extracting data features, deep learning technology has been 
increasingly applied to process GPR images [20]-[24]. To solve 
the limitations of conventional algebraic techniques for 
removing clutter in GPR B-scans, supervised deep learning 
methods have been developed with enhanced accuracy and 
efficiency [25]-[31]. These methods employ convolutional 
encoder-decoder networks [25]-[27], improved U-Net 
structures [28]-[30], and conditional generative adversarial 
networks (cGAN) [31] to learn feature representations of object 
reflections from raw B-scans and generate clutter-free B-scans. 
To improve the decluttering performance on real measurement 
data, a hybrid data generation approach is further proposed, 
which combines measured clutter-only B-scans in real 
scenarios with simulated clutter-free B-scans to create synthetic 
raw B-scans for network training [29]-[31]. However, these 
methods are limited in two respects. 1) As supervised deep 
learning models, they require pairs of raw and clutter-free B-
scans for training, yet obtaining clutter-free B-scans in real 
GPR measurements is unfeasible. Relying solely on simulated 
data, which may not fully capture the complexity of clutter, 
often leads to suboptimal clutter removal performance in real 
scenarios. 2) While the hybrid dataset improves the network’s 
clutter removal performance in real-world scenarios, it 
demands thousands of samples in data sets, resulting in a time-
consuming and labor-intensive data collection and generation 
process. Therefore, it is imperative to explore data 
augmentation methods and unsupervised learning approaches 
to reduce the demands on GPR datasets while achieving 
accurate clutter removal performance in real-world GPR 
applications.  

To address the limitations of existing clutter removal 
methods, in this work, we present a two-stage Unsupervised 
Learning-based Clutter Removal scheme, called ULCR-Net, 
which first augments GPR dataset and then removes clutter in 
GPR B-scans. Extended from our previous study [32], the main 
contributions of this work are listed as follows. 

1) Given the primary challenge in deep learning-based 
methods is the scarcity of datasets in real-world 
scenarios, the first stage employs a diffusion model to 
generate a diverse set of raw B-scans from a very small 
amount of real B-scan samples. The newly generated 

dataset, which is highly diverse and of high quality, is 
then used to train the clutter removal network in the 
second stage.  

2) In the second stage, rather than directly involving clutter-
free B-scans that are unfeasible to measure in real-world 
scenarios for training supervised learning models in the 
paired setting, we employ a contrastive learning-based 
GAN trained in the unpaired setting to learn the features 
of clutter and output the clutter-only B-scan from the 
input raw B-scan. The clutter-free B-scan is 
subsequently obtained by subtracting the clutter-only B-
scan from the raw B-scan. Throughout the training of the 
proposed two-stage scheme, only a small set of raw and 
clutter-only B-scans is required, greatly easing the 
burden of dataset collection in real applications.  

3) The performance of the proposed framework has been 
tested using both simulation and measurement data on 
the clutter removal accuracy and generalizability in 
different scenarios. Comparative studies demonstrate 
that our method outperforms traditional algebraic 
techniques and existing supervised learning-based 
methods, while also avoiding the burden of large labeled 
dataset generation required by supervised learning 
methods. 

The application of the proposed ULCR-Net to the simulation 
and measurement data showed that the peak signal-to-noise 
ratio (PSNR), structural similarity (SSIM), mean absolute error 
(MAE), mean relative error (MRE), and image quality score 
(IQS) reached 50.26 dB, 0.9948, 0.0021, 0.61%, and 0.2225, 
respectively. Compared to state-of-the-art clutter removal 
network based on supervised learning [30], these metrics have 
been improved by 10.63%, 0.59%, 30.00%, 43.52%, and 
89.36%, respectively, indicating the superiority of the proposed 
clutter removal scheme for GPR B-scans.  

The rest of this paper is organized as follows. Section II 
introduces the methodology, including the first-stage data 
augmentation and the second-stage clutter removal networks. 
Section III presents experimental results based on numerical 
simulated data to validate the effectiveness of the proposed 
scheme. Section IV presents the network performance on real 
measurement data. Conclusions are provided in Section V. 

 

 
 
Fig. 1. Overview of the proposed two-stage framework ULCR-Net for removing clutter in GPR images based on unsupervised learning. 
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II. METHODOLOGY 

A. Overall Framework 
The framework of the proposed ULCR-Net is shown in Fig. 

1. The first stage, designed for GPR data augmentation, 
employs a diffusion model to generate a large set of raw B-
scans from a small set of real raw B-scans. These generated B-
scans, combined with the original B-scans, form a diverse and 
high-quality training dataset for the second-stage clutter 
removal network. In the second stage, an unsupervised 
learning-based GAN using contrastive unpaired translation is 
designed to estimate the clutter-only B-scan from the input raw 
B-scan. Finally, the clutter-free B-scan containing only object 
signatures is obtained by subtracting the estimated clutter-only 
B-scan from the raw B-scan. The details of the two stages are 
introduced as follows. It should be noted that the italic 
symbols/letters refer to scalars, bold symbols/letters refer to 
two-dimensional metrices, italic bold symbols/letters refer to 
multi-dimensional arrays, script font set refers to data 
distributions, and double-struck font set refers to operators. 

B. Stage 1: Diffusion Model-Based GPR Data Augmentation 
In the first stage, a diffusion model-based data augmentation 

method is designed to generate a new set of raw B-scans from 
the provided small set of raw B-scans, enlarging the training 
dataset size for the second stage. Compared to classical deep 
generative models, the diffusion model synthesizes images of 
higher diversity and quality with better stability in the training 
process [33]. As illustrated in Fig. 2, the diffusion model 
includes a forward diffusion process and a reverse diffusion 
process. In the forward diffusion process, the provided raw B-
scan is perturbed by successively adding Gaussian noise. In the 
reverse diffusion process, a deep neural network is trained to 
predict and remove the added Gaussian noise step by step and 
finally recover the input B-scan. Using the trained model, new 
B-scans resembling the provided ones are generated by feeding 
random noise images into the trained reverse diffusion process.  
 

 
Fig. 2. The chain transitions of the forward and reverse diffusion process for 
generating the GPR B-scan. 
 
Forward process. In the forward diffusion process, as shown 
in Fig. 2, given a B-scan image from the training data 
distribution 𝐱𝐱0~𝓆𝓆(𝐱𝐱0) , we add small Gaussian noise to the 
input B-scan in 𝑇𝑇 steps and obtain a sequence of noised B-scan 
images 𝐱𝐱1,⋯ , 𝐱𝐱𝑇𝑇 . The input B-scan 𝐱𝐱0  gradually loses its 
distinguishable features as the step 𝑡𝑡 increases. Combined with 
Markov assumption, the forward process can be expressed as 
[34]-[35] 

𝓆𝓆(𝐱𝐱𝑡𝑡|𝐱𝐱𝑡𝑡−1) = 𝒩𝒩�𝐱𝐱𝑡𝑡;�1 − 𝛽𝛽𝑡𝑡𝐱𝐱𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐈𝐈 �, (1) 
where {𝛽𝛽𝑡𝑡 ∈ (0,1)}𝑡𝑡=1𝑇𝑇  is a variance schedule to ensure that the 
final image 𝐱𝐱𝑇𝑇 is nearly an isotropic Gaussian distribution when 

𝑇𝑇  is sufficiently large, 𝒩𝒩(𝐱𝐱; 𝜇𝜇,𝜎𝜎)  represents a normal 
distribution with mean 𝜇𝜇  and covariance 𝜎𝜎  generating the 
sample 𝐱𝐱, and 𝐈𝐈 is an identity matrix with the same dimension 
as the input B-scan.  
Reverse process. Reversely, as shown in Fig. 2, we can 
generate a new B-scan from an input Gaussian noise image 
𝐱𝐱𝑇𝑇~𝒩𝒩(0, 𝐈𝐈 ) following the 𝑇𝑇 reverse step 𝓅𝓅(𝐱𝐱𝑡𝑡−1|𝐱𝐱𝑡𝑡). A deep 
neural network with the trainable parameters 𝜃𝜃  is trained to 
approximate each reverse step 𝓅𝓅𝜃𝜃(𝐱𝐱𝑡𝑡−1|𝐱𝐱𝑡𝑡) to restore the B-
scan 𝐱𝐱0 after 𝑇𝑇 steps. The reverse step is expressed as [34]-[35] 

𝓅𝓅𝜃𝜃(𝐱𝐱𝑡𝑡−1|𝐱𝐱𝑡𝑡) = 𝒩𝒩(𝐱𝐱𝑡𝑡−1;𝛍𝛍𝜃𝜃(𝑡𝑡, 𝐱𝐱𝑡𝑡),𝚺𝚺𝜃𝜃(𝑡𝑡, 𝐱𝐱𝑡𝑡) ), (2) 
where 𝛍𝛍𝜃𝜃(𝑡𝑡, 𝐱𝐱𝑡𝑡)  and 𝚺𝚺𝜃𝜃(𝑡𝑡, 𝐱𝐱𝑡𝑡)  represent the mean and 
covariance in the step 𝑡𝑡 , respectively. Applying the reverse 
formula for all time steps, the data distribution becomes 

𝓅𝓅𝜃𝜃(𝐱𝐱0:𝑇𝑇) = 𝓅𝓅(𝐱𝐱𝑇𝑇)∏ 𝓅𝓅𝜃𝜃(𝐱𝐱𝑡𝑡−1|𝐱𝐱𝑡𝑡)𝑇𝑇
𝑡𝑡=1 . (3) 

With the known noise image 𝐱𝐱𝑇𝑇 and the embedding at time step 
𝑡𝑡, the network learns to reversely predict the noise and restore 
the B-scan. 
Learning strategy. The training of a diffusion model is to find 
the reverse transitions that maximize the likelihood of the 
training data. Using the variational lower bound (VLB) 
combining with Kullback-Leibler (KL) divergence [34]-[37], 
the loss function at each time step 𝜏𝜏𝑡𝑡 can be expressed as 

𝜏𝜏𝑡𝑡 = 𝔼𝔼𝑡𝑡∈[1,𝑇𝑇],𝐱𝐱0,𝛜𝛜𝑡𝑡 ��𝛜𝛜𝑡𝑡 − 𝛜𝛜𝜃𝜃��𝛼𝛼�𝑡𝑡𝐱𝐱0 + �1 − 𝛼𝛼�𝑡𝑡𝛜𝛜𝑡𝑡 , 𝑡𝑡��
2
� , (4) 

where 𝛼𝛼𝑡𝑡 = 1 − 𝛽𝛽𝑡𝑡 , 𝛼𝛼�𝑡𝑡 = ∏ 𝛼𝛼𝑖𝑖𝑡𝑡
𝑖𝑖=1 , 𝔼𝔼  represents the expected 

value, 𝛜𝛜𝑡𝑡 is the real noise at time step 𝑡𝑡, and 𝛜𝛜𝜃𝜃  is the predicted 
noise by the neural network at time step 𝑡𝑡 . This effectively 
measures the distance between the real noise and the predicted 
noise. Therefore, the network is trained to estimate the noise 
image at each time step and finally reconstruct the B-scan. 
Network structure. A neural network is required to train a 
model for predicting 𝛜𝛜𝜃𝜃(𝐱𝐱𝑡𝑡 , 𝑡𝑡) . As the input and output 
dimensions are identical, the U-Net architecture [38] is adopted 
to predict the noise at each time step. Specifically, the network 
consists of four encoding modules and four symmetrical 
decoding modules with skip connections. Each encoding 
module has two Wide ResNet blocks [39] and one down-
sampling layer. Each decoding module has one up-sampling 
layer and two Wide ResNet blocks. The group normalization 
[40] is used in each block. Self-attention blocks are introduced 
between the two residual blocks at the 16×16 resolution [41]. 
The sinusoidal position embedding is incorporated into each 
residual block to specify the diffusion time step 𝑡𝑡 [34]. Using 
the well-trained U-Net structure for 𝑇𝑇  steps, B-scans are 
generated from input random noise images. 

C. Stage 2: Unsupervised GAN-Based Clutter Estimation and 
Removal 

Let 𝐱𝐱 represent a raw B-scan measured by a GPR, which 
generally consists of object signatures 𝐱𝐱s  and clutter 
component 𝐱𝐱c , i.e., 𝐱𝐱 = 𝐱𝐱s + 𝐱𝐱c . The existing supervised 
learning schemes in [25]-[31] use a paired raw and clutter-free 
dataset [𝑿𝑿 , 𝑿𝑿s ] to train a network to establish a mapping 
relationship between the input raw B-scan 𝐱𝐱  and the output 
clutter-free B-scan 𝐱𝐱s . However, generating a large set of 
ground-truth clutter-free B-scans is time-consuming in 
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simulations and impractical in real measurements [29]-[31]. On 
the contrary, obtaining unpaired clutter-only B-scans is 
relatively achievable in real measurements and computationally 
inexpensive in simulations. Therefore, our approach is to train 
a contrastive learning-based GAN [42] to predict clutter-only 
B-scans 𝐱𝐱�c based on an unpaired raw and clutter-only dataset 
[𝑿𝑿, 𝑿𝑿c]. Subsequently, the clutter-free B-scan can be obtained 
by subtracting 𝐱𝐱�c from 𝐱𝐱.  

The architecture of the contrastive learning-based GAN is 
shown in Fig. 3. The GAN consists of an image generator 𝔾𝔾 for 
constructing the clutter-only B-scan and a discriminator 𝔻𝔻 for 
distinguishing the generated clutter-only B-scan 𝐱𝐱�c and the real 
clutter-only B-scan 𝐱𝐱c . The adversarial learning between the 
generator and the discriminator enables the predicted clutter-
only B-scan to be close to the ones in the provided training data. 
However, as the data sets used for training the network are not 
paired, there is no guarantee that the clutter distribution of the 
generated clutter-only B-scan 𝐱𝐱�c  corresponds to that of the 
input raw B-scan 𝐱𝐱. Therefore, the contrastive learning between 
the features extracted from the generated clutter-only B-scan 𝐱𝐱�c 
and the input raw B-scan 𝐱𝐱 is introduced to constrain that 𝐱𝐱�c 
retains the clutter information of  𝐱𝐱.  
Generator. As shown in Fig. 3(a), the generator 𝔾𝔾 has an 
encoder-decoder structure. It consists of one 7 × 7 
convolutional layer followed by instance normalization (IN) 
[43] and rectified linear unit (ReLU) activation [44], two 3 × 3 
down-sampling convolutional layers also with IN and ReLU, 
nine residual blocks, two 3 × 3  up-sampling convolutional 
layers with IN and ReLU, and one 7×7 convolutional layer 
followed by Tanh activation. The structure of the residual block 
is shown in Fig. 3(b). The input feature map is forwarded to one 
3 × 3 convolutional layer followed by IN and ReLU and one  
3 × 3  convolutional layer followed by IN. Then, a skip 
connection is applied by adding the input feature map to the 
processed one. By defining the first half of the generator as the 

encoder 𝔾𝔾enc and the remaining half as the decoder 𝔾𝔾dec, the 
output B-scan is generated as 𝐱𝐱�c = 𝔾𝔾(𝐱𝐱) = 𝔾𝔾dec�𝔾𝔾enc(𝐱𝐱)�. 
Discriminator. The structure of the discriminator 𝔻𝔻  is also 
shown in Fig. 3(a). Based on PatchGAN [45],  the discriminator 
includes three 4 × 4 down-sampling convolutional layers, each 
followed by IN and Leaky ReLU activation, one 4 × 4 
convolutional layer with IN and Leaky ReLU activation, and 
one 4 × 4 convolutional layer without any activation function. 
The final convolutional layer outputs a one-channel prediction 
map to distinguish the generated B-scan and the real B-scan.  
Contrastive learning-augmented loss. To enable the unpaired 
translation from the input raw B-scans to the output clutter-only 
ones, the contrastive learning-augmented loss is introduced to 
train the network [42]. First, the adversarial learning of the 
generator and the discriminator is employed to constrain the 
generated clutter-only B-scans to be similar to the clutter-only 
B-scans in the dataset via the GAN loss: 

𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺(𝔾𝔾,𝔻𝔻,𝑿𝑿,𝑿𝑿c)

= 𝔼𝔼𝐱𝐱c∈𝑿𝑿c log𝔻𝔻(𝐱𝐱c) +𝔼𝔼𝐱𝐱∈𝑿𝑿 log �1 −𝔻𝔻�𝔾𝔾(𝐱𝐱)�� . (5) 

Second, multilayer and patchwise contrastive learning is 
used to maximize the mutual information regarding the clutter 
distribution between the input and output B-scans. This ensures 
that the predicted clutter-only B-scan corresponds accurately to 
the input raw B-scan. As shown in Fig. 3(a), when considering 
a clutter patch 𝐳𝐳  from the output clutter-only B-scan as the 
query, we aim to associate 𝐳𝐳 with its corresponding positive 
patch 𝐳𝐳+ at the same spatial location in the input raw B-scan 
and disassociate 𝐳𝐳  from other noncorresponding negative 
patches 𝐳𝐳− via a cross-entropy (CE) loss [46]: 

𝜏𝜏(𝐳𝐳, 𝐳𝐳+, 𝐳𝐳−) = −log �
exp�𝐳𝐳⋅𝐳𝐳

+
𝜀𝜀 �

exp�𝐳𝐳⋅𝐳𝐳
+
𝜀𝜀 �+∑ exp�𝐳𝐳⋅𝐳𝐳𝑛𝑛

−

𝜀𝜀 �
𝑁𝑁
𝑛𝑛=1

� , (6)  

where 𝜀𝜀, 𝑛𝑛, and 𝑁𝑁 represent the temperature scaler, index, and 
total number of the negative patches, respectively. After 

 

 
Fig. 3. (a) Architecture of the contrastive learning-based GAN for estimating the clutter-only B-scan 𝐱𝐱�c from the input noisy B-scan 𝐱𝐱. (b) Structure of the residual 
block. (c) Structure of the multilayer perceptron (MLP) network to obtain the projected features via 𝐳𝐳𝑙𝑙 = ℍ𝑙𝑙�𝔾𝔾enc

𝑙𝑙 (𝐱𝐱 or 𝐱𝐱�c)�. Note that ‘Conv’, ‘IN’, ‘ReLU’, 
‘Tanh’, ‘LeakyReLU’, ‘Linear’, and ‘L2 Norm’ represent the convolution, instance normalization, ReLU activation, Tanh activation, Leaky ReLU activation, fully 
connected layer, and L2 normalization, respectively.  
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separately inputting 𝐱𝐱  and 𝐱𝐱�c  into 𝔾𝔾enc  and obtaining the 
feature maps, we select 𝐿𝐿  layers of interest and pass them 
through a multilayer perceptron (MLP) network, which is 
defined as ℍ, to further extract features from the selected 𝐿𝐿 
layers.  

The MLP network consists of two fully connected layers, as 
shown in Fig. 3(c). For each spatial position 𝑠𝑠 ∈ {1, 2,⋯ , 𝑆𝑆} at 
each layer 𝑙𝑙 ∈ {1, 2,⋯ , 𝐿𝐿}, the query patch encoded from the 
output clutter-only B-scan is represented as 𝐳𝐳𝑙𝑙𝑠𝑠 =
�ℍ𝑙𝑙 �𝔾𝔾𝑒𝑒𝑒𝑒𝑒𝑒

𝑙𝑙 �𝔾𝔾(𝐱𝐱)���
𝑠𝑠
. Then the positive and negative patches 

encoded from the input raw B-scan are represented as 
𝐳𝐳+𝑙𝑙

𝑠𝑠 = �ℍ𝑙𝑙�𝔾𝔾𝑒𝑒𝑒𝑒𝑒𝑒
𝑙𝑙 (𝐱𝐱)��𝑠𝑠  and 𝐳𝐳−𝑙𝑙

𝑆𝑆\𝑠𝑠 = �ℍ𝑙𝑙�𝔾𝔾𝑒𝑒𝑒𝑒𝑒𝑒
𝑙𝑙 (𝐱𝐱)��𝑆𝑆\𝑠𝑠

, 
respectively, where 𝑆𝑆\𝑠𝑠  denotes the indices of the 
noncorresponding positions. The contrastive loss involving Eq. 
(6) can be expressed as 

𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑁𝑁𝑁𝑁𝑁𝑁(𝔾𝔾,ℍ,𝑿𝑿) = 𝔼𝔼𝐱𝐱∈𝑿𝑿��𝜏𝜏�𝐳𝐳𝑙𝑙𝑠𝑠, 𝐳𝐳+𝑙𝑙
𝑠𝑠, 𝐳𝐳−𝑙𝑙

𝑆𝑆\𝑠𝑠�
𝑆𝑆

𝑠𝑠=1

𝐿𝐿

𝑙𝑙=1

. (7) 

The final loss function combining the adversarial loss and the 
contrastive loss for training the whole network is expressed as 

𝜏𝜏𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝔾𝔾,𝔻𝔻,ℍ,𝑿𝑿,𝑿𝑿c)
= 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺(𝔾𝔾,𝔻𝔻,𝑿𝑿,𝑿𝑿c) + 𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑁𝑁𝑁𝑁𝑁𝑁(𝔾𝔾,ℍ,𝑿𝑿). (8) 

Once the network is well-trained, it can generate the 
corresponding clutter-only B-scan based on a given raw B-scan. 
Subsequently, the clutter-free B-scan is obtained by subtracting 
this clutter-only B-scan from the raw one. 

III. NUMERICAL EXPERIMENTS 

A. Dataset Preparation and Implementation Details 
To evaluate the clutter removal performance of the proposed 

scheme on numerical simulation data, a set of raw B-scans 
under heterogeneous soil conditions are generated using the 
open-source simulation software gprMax [47]. A typical 
simulation scenario is shown in Fig. 4. The 2D soil domain 
occupies a size of 1.5×0.5 m2, and the spatial discretization is 
0.0025×0.0025 m2. To build a heterogeneous soil environment 
with realistic dielectric and geometric properties, the Peplinski 
mixing model [48] is used and the soil properties are set as sand 
fraction 0.5, clay fraction 0.5, bulk density 2 g/cm3, and sand 
particle density 2.66 g/cm3. The water volumetric fractions, 
relative permittivity, and conductivity of the soil vary within 
[0.1%, 20%], [3.65, 9.91], and [0.01, 0.07], respectively. A 
Gaussian waveform with a center frequency of 1 GHz is used 
as the source waveform. A Hertzian dipole (TX) and a probe 
(RX) transmit and receive the signals, respectively, and are 
moved along the straight scanning trajectory to collect B-scan 
data. 110 raw B-scans for the buried cylindrical object with 
random size, position, and constitutive parameters are 
generated. Among them, the object’s radius is randomly 
selected from [0.025, 0.05] m, the horizontal position and depth 
of the object center are randomly chosen from [0.25, 1.25] m 
and [0.10, 0.25] m, respectively, and the relative permittivity 
value of the object varies in [2, 32]. The corresponding clutter-
only B-scan is obtained by conducting GPR scanning on the 
heterogeneous soil without any objects buried. In total, 110 raw 
B-scans and one clutter-only B-scan are obtained as the 
simulated dataset. All the B-scans are normalized to [0, 1] and 
resized to 128×128. Among the 110 raw B-scans, 100 B-scans 

are used to train the network models in Stages 1 and 2. The one 
clutter-only B-scan is only used as the unpaired ground truth to 
train the contrastive learning-based GAN in Stage 2. The rest 
10 raw B-scans are used as the testing data.  

The proposed two-stage networks are implemented on 
PyTorch [49]. For the diffusion model at Stage 1, the number 
of time steps is set to 1000. The channel numbers of the U-Net 
at each time step are [64, 128, 256, 512]. The batch size, 
learning rate, and number of training steps are set to 16, 2×10-

5, and 20,000, respectively. Using the well-trained diffusion 
model, we generate 100 raw B-scans from random noise and 
combine them with the simulated 100 raw B-scans to form the 
training data of Stage 2. Totally, 200 raw B-scans and the one 
clutter-only B-scan are used for training the second-stage 
network. For the contrastive learning-based GAN at Stage 2, 
five layers of the encoder are used to extract the multilayer 
features. The batch size is set to 1. In the 400-epoch training 
process, the learning rate is 2×10-4 in the first 200 epochs and 
linearly decays to 0 in the last 200 epochs. In the testing phase, 
the clutter-only B-scan is estimated from the input raw B-scan 
using the well-trained generator. 
 

 
Fig. 4. A typical simulation scenario for generating the training dataset and 
regular testing dataset with one cylinder object and the obtained B-scan via the 
GPR scanning.  
 

B. Comparative Result Analysis 
The clutter removal performance of the proposed scheme 

ULCR-Net on the simulated raw B-scans is quantitatively and 
qualitatively compared with existing GPR image clutter 
removal methods, including the SVD [6]-[7], RPCA [12]-[13], 
deep convolutional autoencoder (DCAE) [25], and clutter 
removal network (CR-Net) [30]. For the SVD, the largest 
singular value and the corresponding singular vector of the 
noisy B-scan are removed. For the RPCA, the regularization 
parameter, the augmented Lagrangian parameter, the 
reconstruction error tolerance, and the maximum number of 
iterations are set to 0.025, 0.25, 1×10-6, and 200, respectively. 
For the DCAE and CR-Net, we follow the network structures 
as described in [25] and [30], respectively. When training the 
DCAE using our dataset, the initial learning rate is set to 0.0005 
with a decay rate of 99.99% if the training loss does not 
decrease in the current epoch; the number of epochs and the 
batch size are set to 300 and 1, respectively. When training the 
CR-Net using our dataset, the initial learning rate is set to 0.001 
with a decay rate of 99% if the training loss does not decrease 
in the current epoch; the number of epochs and the batch size 
are set to 300 and 16, respectively. It should be noted that the 
supervised learning-based DCAE and CR-Net use 100 pairs of 
raw and clutter-free B-scans for training the networks from 
scratch, while the proposed ULCR-Net only involves the 
clutter-only B-scan. Referring to [25]-[31], four evaluation 
metrics are employed to compare the clutter removal accuracy, 
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including the PSNR (peak signal-to-noise ratio), SSIM 
(structural similarity), MAE (mean absolute error), and MRE 
(mean relative error) between the estimated clutter-free B-scans 
and the ground-truth clutter-free B-scans. They are defined as: 

PSNR(dB) = 10 log10
1

1
𝐻𝐻×𝑊𝑊∑ �𝐱𝐱s𝑖𝑖,𝑗𝑗−𝐱𝐱�s𝑖𝑖,𝑗𝑗�

2
𝑖𝑖,𝑗𝑗

, (9)  

SSIM =
�2𝜇𝜇𝐱𝐱s𝜇𝜇𝐱𝐱�s+𝑐𝑐1��2𝜎𝜎𝐱𝐱s𝐱𝐱�s+𝑐𝑐2�

�𝜇𝜇𝐱𝐱s
2 +𝜇𝜇𝐱𝐱�s

2 +𝑐𝑐1��𝜎𝜎𝐱𝐱s
2 +𝜎𝜎𝐱𝐱�s

2 +𝑐𝑐2�
, (10)  

MAE = 1
𝐻𝐻×𝑊𝑊

∑ �𝐱𝐱s𝑖𝑖,𝑗𝑗 − 𝐱𝐱�s𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗 , (11)  

MRE =
�∑ �𝐱𝐱s𝑖𝑖,𝑗𝑗−𝐱𝐱�s𝑖𝑖,𝑗𝑗�

2
𝑖𝑖,𝑗𝑗

�∑ 𝐱𝐱s𝑖𝑖,𝑗𝑗
2

𝑖𝑖,𝑗𝑗
× 100%, (12)  

where 𝜇𝜇𝐱𝐱�s  and 𝜇𝜇𝐱𝐱s  are the means of the estimated clutter-free 
B-scan 𝐱𝐱�s  and the ground-truth clutter-free B-scan 𝐱𝐱s , 
respectively. 𝜎𝜎𝐱𝐱s , 𝜎𝜎𝐱𝐱�s, and 𝜎𝜎𝐱𝐱s𝐱𝐱�s  are the variance of 𝐱𝐱s, variance 
of 𝐱𝐱�s, and covariance of 𝐱𝐱s and 𝐱𝐱�s, respectively. 𝑐𝑐1 and 𝑐𝑐2 are 
two variables. 𝑖𝑖 , 𝑗𝑗 , 𝐻𝐻 , and 𝑊𝑊  are the indices and total 
dimensions of the B-scan image. Higher PSNR and SSIM and 
lower MAE and MRE indicate better clutter removal accuracy. 

 Table I presents the comparative results on the evaluation 
metrics. “R” column in the table represents the test results on 
regular 10 testing data, described in subsection A, while the test 
on the data in other columns, “G1”, “G2”, and “G3”, is 
explained in subsection C. Their average PSNR, SSIM, MAE, 
and MRE are calculated and listed. It is observed that the 
proposed ULCR-Net achieves the highest PSNR and SSIM and 
the lowest MAE and MRE, demonstrating the superior clutter 
removal performance of the proposed two-stage network.  
 To visually compare the clutter removal performance of 
different methods, Fig. 5 shows the results of four cases within 
the regular testing dataset. The raw B-scans contain the direct 
coupling of TX and RX, reflections from the ground, irregular 
clutter due to the heterogeneous soil environment, and 
hyperbolic signatures due to reflections from the buried 
cylindrical object with various properties. Although the 
conventional SVD and RPCA algorithms effectively remove 
the direct coupling and reflections from the ground, they cannot 
remove irregular clutter patterns due to the heterogeneous soil.  
The supervised deep learning-based DCAE and CR-Net 

TABLE I 
METRICS COMPARISON WITH EXISTING CLUTTER REMOVAL METHODS ON NUMERICAL SIMULATION DATASET 

Method 
PSNR (dB)  

(↑) 
SSIM (×10-2) 

(↑) 
MAE (×10-2)  

(↓) 
MRE (%)  

(↓) 
R G1 G2 G3 R G1 G2 G3 R G1 G2 G3 R G1 G2 G3 

SVD 38.15 38.17 37.21 37.98 95.63 95.81 95.60 95.62 0.62 0.62 0.65 0.63 2.47 2.47 2.79 2.52 

RPCA 37.74 37.81 37.72 37.61 95.96 96.05 96.30 96.09 0.50 0.49 0.50 0.51 2.58 2.57 2.59 2.63 

DCAE 40.91 40.78 38.22 40.17 96.58 96.48 96.22 96.19 0.53 0.55 0.60 0.57 1.81 1.88 2.72 2.02 

CR-Net 45.43 44.90 41.03 44.32 98.90 98.71 98.29 98.61 0.30 0.32 0.37 0.33 1.08 1.26 2.47 1.31 

ULCR-Net 50.26 49.96 48.98 49.89 99.48 99.45 99.48 99.46 0.21 0.21 0.22 0.22 0.61 0.64 0.73 0.64 

 

   
Fig. 5. Clutter removal result comparison on numerical simulation data. Cases R.1-R.4 represent four scenarios in the regular testing dataset, in which a cylindrical 
object with various properties is buried in the heterogeneous soil environment. 
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outperform SVD and RPCA by recognizing the features of the 
object’s reflection patterns and extracting them out, but some 
clutter remains in their predicted clutter-free B-scans. This is 
because the small dataset size (only 100 pairs) is insufficient to 
train these fully supervised learning-based networks well. In 
contrast, our proposed two-stage scheme ULCR-Net first 
augments the small dataset and then learns the features of the 
clutter distribution from the provided clutter-only B-scans. In 
this way, the clutter patterns are accurately estimated. 
Subtracting the accurate clutter patterns from raw B-scans 
yields cleaner and clutter-free B-scans.  

C. Generalizability Test on New Scenarios 

In the training dataset and the regular testing dataset, only the 
scenarios with a single cylinder object buried in heterogeneous 
soil [Fig. 4] are considered. To examine the generalizability of 
the proposed scheme in new scenarios, we generate three 
generalized testing datasets by simulating new-shape objects, 
new-material objects, and multiple objects buried in the 
heterogeneous soil, as shown in Figs. 6(a)-(c), respectively. 
 

 
Fig. 6. Simulation scenarios for (a) new-shape objects in dataset G1, (b) new-
material objects in dataset G2, and (c) multiple objects in dataset G3, 
respectively, in the generalizability test. 

 
For these generalized testing datasets, dataset G1 includes 10 

scenarios with rectangle-shaped objects and 10 scenarios with 
triangle-shaped objects, dataset G2 includes 10 scenarios with 
air-filled objects (or cavities) and 10 scenarios with metal 
objects, and dataset G3 includes 10 two-object scenarios and 10 

 

  
Fig. 7. Imaging result comparison of the generalizability test. Cases G1.1, G1.2, G2.1, G2.2, G3.1, and G3.2 represent the scenarios with one rectangle-shaped 
object, one triangle-shaped object, one air-filled object, one metal object, two objects, and three objects, respectively. 
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three-object scenarios. These generalized testing datasets are 
directly fed into the network without any fine-tuning. The 
performance of the proposed method, alongside comparison 
methods, is quantitively compared using PSNR, SSIM, MAE, 
and MRE, as shown in Table I. Our scheme achieves the highest 
PSNR and SSIM and the lowest MAE and MRE in all 
generalized datasets, demonstrating enhanced generalizability 
compared to existing methods. 
 The clutter-removal results of the three generalized testing 
datasets are visualized in Fig. 7. Cases G1.1, G1.2, G2.1, G2.2, 
G3.1, and G3.2 represent scenarios with one rectangular object, 
one triangular object, one air-filled object, one metallic object, 
two objects, and three objects, respectively. For the network 
trained on only one-cylinder-object scenarios, the reflection 
signatures in these B-scans are totally new. For example, the 
reflection patterns of rectangular and triangular objects are non-
standard hyperbolic; the field strength values of reflections of 
the air-filled and metal objects differ significantly from those in 
the training set; and the multiple-object cases present complex 
overlapping and interfering reflection patterns. However, our 
proposed scheme, having learned sufficient information about 
clutter distribution, can accurately distinguish the clutter 
patterns from the object signatures in these new B-scans. The 
estimated clutter-free B-scans using the proposed ULCR-Net 
are the closest to their ground truths compared to the results of 
SVD, RPCA, DCAE, and CR-Net. The comparative results 
shown in Table I and Fig. 7 quantitively and qualitatively verify 
the superior generalizability of the proposed scheme. 
 

TABLE II 
TESTS ON CASES WHEN THE CLUTTER SUPPRESSES THE TARGET 

Case 
No. 

Upper 
Depth 
(cm) 

Diameter 
(cm) 

Horizontal 
Position 

(cm) 

Relative 
Permittivity  

PSNR 
(dB)  

SSIM 
(×10-2) 

MAE 
(×10-2)  

MRE 
(%)  

i 4 2 75 19 49.63 99.43 0.22 0.66 
ii 2 3 100 8 52.54 99.55 0.11 0.47 
iii 1 3 50 10 50.22 99.46 0.21 0.61 

 

 
Fig. 8. Imaging results of the tests on scenarios when the clutter suppresses the 
target. Cases i, ii, and iii represent the scenarios with one cylindrical object 
buried in the soil, in which the depths of  the object’s upper surface are 4 cm, 2 
cm, and 1 cm, respectively. 
 

Furthermore, to test the cases when the clutter suppresses the 
target, three new scenarios with the object buried very close to 

the ground are simulated and then the obtained raw B-scans are 
directly fed into the trained network. The object parameters and 
evaluation metrics of the clutter removal results using the 
proposed scheme are listed in Table II. The high PSNR and low 
SSIM, MAE, and MRE in each case demonstrate high clutter-
removal accuracy of our method. The visual results, displayed 
in Fig. 8, show that the estimated clutter-free B-scans closely 
match the ground truth, highlighting the network’s capability to 
effectively remove clutter even when it heavily masks the target 
signatures in the raw B-scans. These results verify that the 
proposed scheme effectively learns the features of the clutter 
and accurately removes it. 

D. Tests on a Complicated Realistic Scenario  
 

 

 
Fig. 9. (a) Schematic of the simulation scenario of the complicated surface with 
rough ground, water puddles, and grass blades. (b) Imaging results of the clutter 
removal for the complex scenarios. Cases C1-C3 represent three testing 
scenarios in which the depth range of the object center is randomly selected 
from [0.10, 0.25] m. Cases C4-C5 represent three new scenarios in which the 
depths of the object’s upper surface are 4 cm, 2 cm, and 1cm, respectively. 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

To test more realistic scenarios using the proposed scheme, 
we add rough ground surface with water puddles and grass 
blades in the heterogeneous soil model, as shown in Fig. 9 (a). 
In particular, the surface roughness is 0.1 m from peak to valley. 
The water puddles on the rough surface have a depth of 0.025 
m. The number of blades of the grass with random distributions 
is set to 500 and the grass height varies from 0 to 0.2 m on the 
rough surface. The depth of the object center is randomly 
selected from [0.10, 0.25] m and the radius of the cylindrical 
object is randomly chosen from [0.025, 0.05] m. The 
commercial GSSI 400-MHz antenna built in gprMax [50] is 
adopted as the transceiver for GPR scanning. A total of 100 raw 
B-scans are simulated for training the proposed networks and 
10 for testing. The object parameters, soil properties, and the 
implementation details of the proposed framework are the same 
as those described in subsection A. The clutter-only B-scan is 
obtained via the simulation of the complicated scenario without 
any buried objects. 

The visual results, including the raw B-scans, the ground-
truth clutter-free B-scans, and the clutter-free B-scans obtained 
via the proposed scheme, are shown in Cases C1-C3 of Fig. 9(b). 
It is observed that the clutter due to the complicated scattering 
mechanism on the surface and the heterogenous soil 
environment is accurately removed, and the object signatures 
are retained in the estimated clutter-free B-scans. The average 
PSNR, SSIM, MAE, and MRE of the testing data reach 49.88 
dB, 99.39×10-2, 0.22×10-2, 0.64%, respectively, which are 
comparable to those obtained in much simpler scenarios. We 
further test three new scenarios where the clutter suppresses the 
target signatures, as shown in Cases C4-C6 of Fig. 9(b), in 
which the depths of the object’s upper surface are 4 cm, 2 cm, 
and 1 cm, respectively. The raw B-scans of these three scenarios 
are directly fed into the well-trained network without any 
additional fine-tuning. As shown, the estimated clutter-free B-
scans are close to the ground truths. The average PSNR, SSIM, 
MAE, and MRE of the three testing samples are 46.96 dB, 
99.08×10-2, 0.26×10-2, and 0.90%, respectively, which are 
degraded compared to those of the scenarios without severe 
clutter suppression but still acceptable. These results 
demonstrate the applicability of the proposed scheme in 
complicated real-world environments. 

E. Ablation Study 
Stage 1 of the proposed scheme is designed to augment the 

diversity of the training data using a diffusion model, aiming to 
enhance clutter removal performance at Stage 2, given a limited 
amount of original data. To verify the effectiveness of Stage 1 
in boosting this performance, we conduct an ablation study that 
compares the clutter removal results of the proposed network 
with and without Stage 1 on both the regular testing dataset and 
the generalized testing datasets. The network without Stage 1 
(or only Stage 2) means training the contrastive learning-based 
GAN at Stage 2 using only the 100 raw B-scans without any 
data augmentation. Other settings of the second-stage network 
remain unchanged. The comparative results are listed in Table 
III. As shown, the proposed two-stage framework ULCR-Net 
that combines Stages 1 and 2 constantly achieves higher PSNR 
and SSIM and lower MAE and MRE on all the regular and 
generalized testing datasets. This improvement suggests that 
the diverse B-scans generated by the diffusion model at Stage 1 

help the network at Stage 2 learn more features of the clutter 
patterns and object signatures. As a result, the clutter estimation 
accuracy and generalization capability of the second-stage 
network are enhanced. The results demonstrate the 
effectiveness of the diffusion model on GPR data augmentation. 
 

TABLE III 
METRICS COMPARISON TO DEMONSTRATE THE EFFECTIVENESS OF DIFFUSION 

MODEL AT STAGE 1 

Metrics 
Only Stage 2 Stages 1 and 2  

(Proposed ULCR-Net) 

R G1 G2 G3 R G1 G2 G3 

PSNR  
(dB) (↑) 49.60 49.52 48.37 49.18 50.26 49.96 48.98 49.89 

SSIM 
(×10-2) (↑) 99.40 99.40 99.41 99.38 99.48 99.45 99.48 99.46 

MAE 
(×10-2) (↓) 0.23 0.23 0.24 0.24 0.21 0.21 0.22 0.22 

MRE  
(%) (↓) 0.66 0.67 0.78 0.70 0.61 0.64 0.73 0.64 

  
TABLE IV 

METRICS COMPARISON USING DIFFERENT AMOUNTS OF TRAINING SAMPLES 
Original 

Sample No. 
Generated 

Sample No. 
PSNR  

(dB) (↑) 
SSIM  

(×10-2) (↑) 
MAE 

(×10-2) (↓) 
MRE  

(%) (↓) 
100 100 50.26 99.48 0.21 0.61 

80 100 49.66 99.39 0.22 0.66 

60 100 49.09 99.33 0.24 0.70 

40 100 48.73 99.35 0.25 0.74 

20 100 46.93 98.97 0.27 0.90 

 

 
Fig. 10. Clutter-removal result comparison when different amounts of training 
samples are used for the proposed ULCR-Net.  
 

To further investigate the required amount of the inputted 
training samples for the proposed scheme, the test results for 
different amounts of B-scans are compared in Table IV. In the 
first stage, we use 20, 40, 60, 80, and 100 raw B-scans to train 
the diffusion model to generate 100 new noisy B-scans, 
respectively. Then in the second stage, the combined 120, 140, 
160, 180, and 200 noisy B-scans are used to train the contrastive 
learning-based GAN, respectively. The PSNR, SSIM, MAE, 
and MRE of the same testing data are calculated to evaluate the 
clutter-removal performance. As shown in Table IV, as the 
amount of training samples decreases, the clutter-removal 
accuracy decreases. Especially when the amount of training 
samples decreases from 40 to 20, the degrading rate of the 
clutter-removal performance becomes larger. The estimated 
clutter-free B-scans using various amounts of training samples 
are visualized in Fig. 10. As shown, when the amount of 
training samples decreases to 20, the object signatures in the 
estimated clutter-free B-scan become weaker than those in the 
ground-truth B-scan, and new clutter patterns appear in the 
estimated clutter-free B-scan. Based on the comparison, it can 
be concluded that using more than 40 training samples in the 
proposed scheme can maintain good performance, and using a 
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larger number of training samples would yield higher clutter-
removal accuracy.  

IV. TESTS ON REAL MEASUREMENT DATA 

A. Real Data Collection and Implementation Details 
The clutter removal performance of the proposed scheme is 

also assessed using real measurement data. As shown in Fig. 11, 
a commercial GSSI Utility Scan Pro GPR system with a 400-
MHz antenna is used to collect B-scans in an outdoor uneven 
sandy field. The scanning trace is 1 m, and the time window is 
20 ns. For training data, the raw B-scans were acquired by 
burying a wooden cylinder object with different diameters and 
relative permittivity (𝜀𝜀𝑟𝑟) [Fig. 11]. The ranges of the horizontal 
position, depth, horizontal angle, and vertical angle of the 
buried object are within [20, 80] cm, [9, 25] cm, [0, 60°], and 
[0, 60°], respectively. The clutter-only B-scans are collected by 
conducting GPR scanning in the field without any buried 
objects. To assess the generalizability of the proposed scheme, 
box-shaped objects and multiple objects are buried 
underground to obtain new raw B-scans that are not included in 
the training dataset. In total, 30 raw B-scans and 30 clutter-only 
B-scans are collected and used as the training dataset, and four 
new raw B-scans are obtained for testing purposes. All the real 
measured B-scans are processed by time-zero correction [5], 
normalized to [0, 1], and resized to 128×128. 

 

 
Fig. 11. The experiment setup for collecting real measurement data. Only 
single-cylinder-object scenarios are used for training. New scenarios with box-
shaped objects and multiple objects are used to test network generalizability. 
 

The parameter settings used for training the networks are the 
same as those described in Section III.A. First, we generate 70 
additional raw B-scans using the well-trained diffusion model 
at Stage 1. These B-scans are combined with the 30 real 
measured raw B-scans to form the training data for Stage 2. 
Consequently, the training dataset for the contrastive learning-
based GAN at Stage 2 comprises 100 raw B-scans as inputs and 
30 clutter-only B-scans as outputs in an unpaired mode. During 
the testing phase, the four newly acquired raw B-scans are 
directly fed into the trained generator network at Stage 2 to 
obtain the predicted clutter-only B-scans. The clutter-free B-
scans are then obtained by subtracting the predicted clutter-only 
B-scans from the raw B-scans. 

As the real measured raw B-scans do not have corresponding 
ground truth, the evaluation metrics in Eqs. (9)-(12) are not 
applicable. Instead, we employ a non-reference metric, the  IQS 
(image quality score), to evaluate the clutter removal 
performance based on clutter reduction and structure 
preservation, as done in [51]-[52]. The IQS is expressed as 

IQS = −ℂ�𝐒𝐒(𝐱𝐱, 𝐱𝐱�c), 𝐒𝐒(𝐱𝐱, 𝐱𝐱�s)�, (13) 
where 𝐒𝐒(𝐱𝐱, 𝐱𝐱�c)  and 𝐒𝐒(𝐱𝐱, 𝐱𝐱�s)  represent the SSIM map of the 
input raw B-scan 𝐱𝐱 and the output clutter-only B-scan 𝐱𝐱�c and 
the SSIM map of the input raw B-scan 𝐱𝐱  and the estimated 
clutter-free B-scan 𝐱𝐱�s , respectively, while ℂ  stands for the 
Pearson linear correlation coefficient between these two SSIM 
maps. The SSIM map contains the local SSIM value for each 
pixel of the B-scan image based on Eq. (10). A larger IQS 
indicates better clutter removal performance. 

B. Result Comparison and Analysis 
 As performed on simulation data, the clutter removal 

performance on real measurement data using the proposed two-
stage scheme ULCR-Net is compared with the existing clutter 
removal methods, including SVD [6]-[7], RPCA [12]-[13], 
DCAE [25], and CR-Net [30]. For training the supervised deep 
learning-based techniques DCAE and CR-Net, we follow the 
dataset generation method described in [30]. Specifically, real 
measured clutter-only B-scans are combined with simulated 
clutter-free B-scans to form the raw B-scans as input for DCAE 
and CR-Net, and the corresponding simulated clutter-free B-
scans are used as the ground-truth outputs. To maintain 
consistency between the experimental clutter-only B-scans and 
simulated clutter-free B-scans, the GSSI 400-MHz GPR 
antenna model from gprMax [50] is used for transmitting and 
receiving signals in the one-meter scanning scenarios with a 
buried cylinder object. In this way, we obtain 100 pairs of data 
for training the DCAE and CR-Net. Once the networks are well 
trained, they are used to remove clutter in the four real measured 
raw B-scans. 

The comparative clutter removal results of SVD, RPCA, 
DCAE, and CR-Net are presented in Fig. 12. The dotted frames 
in red mark the area of the target signatures and the red arrows 
indicate the clutter. Cases R, G1, G2, and G3 represent the test 
scenarios with one cylinder-shaped object, one box-shaped 
object, two cylinder-shaped objects, and two mixing objects of 
cylinder and box shapes, respectively. It should be noted that 
Cases G1, G2, and G3 have never appeared in the training data. 
We can observe that SVD and RPCA cannot effectively 
suppress the clutter patterns located above the object signatures 
due to reflections from the uneven ground as well as those 
located below the object signatures due to the reflections from 
the field boundaries; some reflection patterns of the subsurface 
objects are even distorted. For DCAE, as only a small dataset is 
employed to train the supervised learning-based network, the 
network cannot learn adequate informative features of the 
object signatures, resulting in unsatisfactory clutter removal 
performance. For the CR-Net using a more advanced clutter 
removal network, its clutter suppression capability is improved 
compared to DCAE. However, since it is trained with simulated 
clutter-free B-scans as ground truths, it tends to estimate field 
strengths similar to the simulated data, sometimes mistakenly 
recognizing clutter with strengths close to the objects’ 
reflections as actual signatures, retaining them in the clutter-
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free B-scans. On the contrary, our proposed ULCR-Net can 
suppress the clutter and accurately estimate the object 
signatures using a very small set of unlabeled real measurement 
data. Although some irregular clutter still exists, the overall 
clutter removal performance on the real measurement data is 
satisfactory. The average IQS of the clutter-free B-scans using 
the proposed ULCR-Net reaches 0.2225 [Fig. 12], which is the 
highest compared to those of SVD, RPCA, DCAE, and CR-Net. 
This demonstrates the superior accuracy and generalizability of 
the proposed scheme in reducing clutter and effectively 
retaining the object reflections in diverse real-world B-scans.  

V. CONCLUSIONS 
 In this paper, we present a two-stage framework for clutter 

removal in GPR B-scans based on unsupervised learning. The 
first stage focuses on data augmentation, where a diffusion 
model is employed to generate GPR B-scans from random 
noise. This stage helps build a larger dataset from a small 
amount of real data, which is crucial for training the learning-
based clutter removal network in the second stage. The second 
stage is dedicated to clutter removal, which involves a 
contrastive learning-based GAN that learns to predict clutter-
only B-scans through unsupervised learning. The final clutter-
free B-scans are obtained by subtracting the clutter-only B-
scans from the raw B-scans. The entire learning process of the 
two-stage framework only requires a small set of unpaired raw 
and clutter-only B-scans, which is relatively easier to acquire in 
the field. Experimental results on both simulation and 
measurement data demonstrate the superior clutter removal 

performance of our method compared to existing algebraic and 
supervised learning-based techniques in terms of clutter 
removal accuracy and generalization capability. Besides the 
effective clutter removal performance, our method successfully 
addresses the key challenge of acquiring large labelled dataset 
in real-world scenarios for supervised deep learning-based 
methods. These advantages make our method highly suitable 
for clutter removal in practical GPR applications.  
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