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MAPD-Net: A GPR-Based Method for Estimating
Rebar Parameters and Concrete Moisture Content
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Abstract—Ground-penetrating radar (GPR) is an efficient non-
destructive technique for inspecting reinforced concrete struc-
tures. Estimating reinforcing bar (rebar) parameters from GPR
radargrams remains challenging due to the strong correlation
among rebar-related parameters when producing the reflection
signature. Additionally, the unknown rebar orientation affects
GPR detection capabilities and adds further difficulties in rebar
parameter estimation, which has not yet been addressed in the
existing literature. To tackle these issues, we present a neural
network structure, called Multi-Polarimetric Aggregation and Pa-
rameter Decorrelation Neural Network (MAPD-Net), to automat-
ically derive multiple rebar and concrete parameters from GPR
radargrams. These parameters include concrete moisture content
(mc), rebar cover depth (d), radius (r), and orientation (φ).
Given multi-polarization radargrams as inputs, the MAPD-Net
extracts informative features from each polarization radargram,
weakens parameter correlation, and performs estimation of each
parameter. Numerical results demonstrate that the MAPD-Net
achieves high estimation accuracy in estimating these parameters.
The mean absolute errors of mc, d, r, and φ in the 600 testing
data are 0.06%, 0.8 mm, 0.4 mm, and 1.0◦, respectively. The
average absolute percentage errors of them are 2.2%, 1.1%,
3.8%, 4.4%, respectively.

Index Terms—Ground-penetrating radar, multi-polarization,
neural network, parameter decorrelation, parameter estimation.

I. INTRODUCTION

GROUND-PENETRATING radar (GPR) has been widely
used in the inspection of reinforced concrete structures.

Locating reinforcing bars (rebars) and estimating their radius,
orientation, and surrounding concrete properties are critical for
structural health evaluation. However, the rebar reflection in a
radargram results from the combined effect of multiple param-
eters. It is challenging to isolate the effect of a single parameter
on the reflection signature because changes in one parameter
may lead to changes in the reflection that are similar to those
caused by another parameter. Therefore, the correlation among
multiple rebar and concrete parameters when producing the
rebar reflection signature makes the parameter estimation an
ill-posed problem [1].

Several conventional methods have been investigated to
derive the cover depth and radius of a rebar and/or its
surrounding concrete properties. As the geometry of the
rebar’s hyperbolic reflection signature contains information
on dominant rebar parameters, pattern-based methods were
developed to derive rebar parameters from the hyperbolic arc
[2]–[6]. Based on the influence of the rebar radius on the
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radar cross section for orthogonal polarizations, the radius
can be extracted from the ratio of the backscattered energy
of the rebar collected by orthogonal polarizations [7], [8].
Full-waveform inversion algorithms were presented in [9]
to account for the radiation patterns of the electromagnetic
source and receiver when characterizing rebar parameters.
GPR antenna array combined with imaging methods were
developed in [10] to produce high-resolution imaging of rebar
and correlate it with rebar radius.

A common limitation of the aforementioned methods is
that they are only valid when the rebar is orthogonally
oriented to the GPR scanning trace and when the antenna
polarization matches the rebar axis. However, this situation
cannot be guaranteed due to deviations in orientation caused
by construction errors or structural deficiencies. Different rebar
orientations significantly affect the GPR detection capabilities
of rebar, altering the shape and magnitude of the rebar reflec-
tion signature. This undermines the effectiveness of existing
rebar parameter estimation methods and complicates GPR data
interpretation [11].

Given the limitations of existing rebar characterization
methods, advanced techniques are needed for accurate and
simultaneous estimation of key rebar parameters. Since multi-
ple rebar parameters collectively influence the rebar reflection
signature in radargrams, a possible solution is to establish a
non-linear mapping relationship between the features of the
rebar reflection signature and multiple rebar parameters. Ar-
tificial intelligence algorithms, known for their robust feature
extraction and learning capabilities, have demonstrated their
effectiveness in rebar localization [16] and parameter estima-
tion [?]. However, previous works have also neglected the
cases of a rebar with different orientations, and the parameter
estimation in [?] was performed based on A-scans collected on
top of the rebar. Scenarios that deviate from this setup could
result in estimation errors [?].

In this paper, to address the aforementioned limitations
in both conventional and artificial intelligence algorithms,
we present a Multi-Polarimetric Aggregation and Parameter
Decorrelation Neural Network (MAPD-Net) that simultane-
ously estimates multiple rebar and concrete parameters based
on multi-polarimetric radargrams. The parameters include the
cover depth (d), radius (r), orientation (φ), and concrete
moisture content (mc). The MAPD-Net takes the multi-
polarimetric radargrams as inputs, extracts informative features
of the rebar reflection signature via a Multi-Polarimetric
Feature Extraction-Aggregation Module (MFEM), alleviates
the adverse effects of parameter correlation and estimates
four parameters in the Parameter Decorrelation-Estimation
Module (PDM). Numerical experiments show that the MAPD-
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Net achieves high accuracy in estimating these parameters.
The novelty of this work is threefold. 1) To the best of our
knowledge, this is the first work that considers the rebar
orientation when estimating other rebar parameters, which
enables a more robust and complete analysis of the rebar
condition. 2) The MAPD-Net effectively addresses the ad-
verse effects of parameter correlation, which greatly improves
the estimation accuracy of each parameter. 3) The MAPD-
Net successfully builds a non-linear mapping between multi-
polarimetric radargrams and rebar and concrete parameters,
enabling simultaneous and accurate parameter estimation. The
accurately estimated parameters could facilitate subsurface
rebar mapping and health examination of reinforced structures.

II. THE INFLUENCE OF DIFFERENT PARAMETERS ON
MULTI-POLARIMETRIC RADARGRAMS

As a rebar depolarizes the incident waves based on its
orientation, a multi-polarimetric GPR setup is adopted in this
work for rebar detection. In this section, we briefly describe the
influence of different rebar parameters and concrete moisture
content on the radargrams collected by multi-polarimetric
components (in short, multi-polarimetric radargrams). This
GPR domain knowledge informs the neural network-based
parameter estimation method as presented in Section III.

Fig. 1 shows the simulation scenario in gprMax [17] for nu-
merical study. The concrete of different moisture content (mc)
is modeled as a dispersive material with the Debye parameters
provided in [?]. The rebar is modeled as a perfect electric
conducting cylinder with a radius of r. It is located at a cover
depth of d, and oriented at a horizontal angle φ. Orthogonally
polarized (x- and y-polarized) sources and probes operating
at a center frequency of 2 GHz are used as transmitters (TX)
and receivers (RX) for rebar detection. They are spaced 100
mm apart and placed on the concrete surface. The scanning is
performed by moving TX and RX along the x-direction with
a step size of 25 mm. Reflected signals at 21 points along the
scanning trace are collected by the multi-polarized TX/RX.
Signals collected by each polarimetric component are com-
bined into a two-dimensional B-scan radargram. Consequently,
four multi-polarimetric radargrams, i.e., Sxx, Sxy , Syx, and
Syy radargrams, are obtained in each scan, where the first and
second subscripts in the polarimetric components denote the
polarization of RX and TX, respectively.

The influence of each rebar and concrete parameter on the
multi-polarimetric radargrams is studied by changing a single
parameter value while setting others to default values. The
default values are mc = 6%, d = 200 mm, r = 10 mm, and
φ = 90◦ unless otherwise specified.

Moisture content mc. Fig. 2(a) shows the multi-
polarimetric radargrams with different mc. A higher mc
results in a higher relative permittivity and conductivity of the
concrete, leading to greater permittivity contrast between air
and concrete, a lower propagation velocity of electromagnetic
(EM) waves, and a larger attenuation of EM waves in the
concrete. These factors produce stronger surface reflected sig-
nals, a later arrival time, a smaller amplitude, and a narrower
hyperbolic curvature of the rebar reflection in the co-polarized

Fig. 1. Illustration of the simulation scenario of a rebar in concrete.
Orthogonally polarized transmitter and receiver are used for rebar detection.

(a) (b)

(c) (d)
Fig. 2. Radargrams of the polarimetric components Sxx, Sxy , Syx, and
Syy of a rebar with different (a) concrete moisture content mc, (b) depth
d, (c) radius r, and (d) orientation angle φ. The parameters affect different
characteristics of the radargrams, such as the spatial location, pixel value,
and shape of rebar reflection signature. These characteristic features in multi-
polarimetric radargrams can be used to estimate the rebar and concrete
parameters.

Sxx and Syy radargrams. Since the concrete has a flat surface
that mainly reflects co-polarized signals, the surface reflection
is not obvious in the cross-polarized Sxy and Syx radargrams.
Therefore, the information of mc is carried in the pixel value
of the surface reflection, the pixel value, spatial position, and
shape of the rebar reflection signature in the radargrams.

Depth d. Fig. 2(b) shows the multi-polarimetric radargrams
with different d. A deeper location of a rebar leads to a later
arrival time, a weaker strength of the rebar reflected signal, and
a broader hyperbolic curvature. Therefore, the information of
rebar depth is carried in the spatial location, pixel value, and
shape of the rebar reflection signature in the radargrams.
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Radius r. Fig. 2(c) shows the multi-polarimetric radargrams
with different r. A rebar with a larger radius produces a
stronger signal strength and a broader hyperbolic curvature.
When the rebar has a very small radius that is not comparable
to the GPR wavelengths in concrete (λ at 2.0 GHz is around
50 mm in concrete with mc = 6.0%), such as in the case
of r = 2 mm, the rebar reflection is very weak in the
Sxx radargram because the x-polarization is orthogonal to
the rebar orientation, but Syy can capture distinguishable
object reflection thanks to polarization match. Therefore, the
information of the rebar radius is carried in the pixel value
and shape of the rebar reflection signature in the radargrams.

Orientation angle φ. Fig. 2(d) shows multi-polarimetric
radargrams of a rebar with different φ. The rebar radius is
set as 2 mm to better demonstrate the influence of φ. The
orientation affects both the signal strength and the shape of
the rebar reflection in radargrams. When φ = 0◦, Sxx collects
the strongest rebar reflection as the rebar orientation is parallel
to the x-direction. Sxy , Syx, and Syy collect little object
reflection. In this case, the reflection shape appears as a hori-
zontal line. As φ increases from 0◦ to 45◦, the signal strength
collected by Sxx decreases, whereas the strengths collected by
Sxy , Syx, and Syy increase. As φ further increases from 45◦

to 90◦, Syy captures a larger strength of the reflected signal,
whereas Sxx, Sxy , and Syx collect smaller strengths. At 90◦,
Syy reaches the maximum strength as the object orientation
aligns with the y-direction. In addition, as φ increases from
0◦ to 90◦, the reflection curve transitions from a flat pattern
to a hyperbolic pattern. As φ further increases from 90◦ to
180◦, the variations in signal strengths and reflection curves
in the radargrams are opposite to those observed as φ increases
from 0◦ to 90◦. For φ in the range of [90◦,180◦), the rebar
reflection pattern is identical with the case of (180◦ − φ) in
the co-polarized Sxx and Syy radargrams, as demonstrated
in cases of φ = 135◦ and φ = 45◦. However, the signals in
these two cases are out of phase in the cross-polarized Sxy and
Syx radargrams. This information is the key to differentiating
between these cases. Therefore, the information of φ is carried
in the differences in the pixel value and shape of the rebar
reflection signature in different polarimetric radargrams.

In summary, the rebar reflection signature in multi-
polarimetric radargrams results from the combined effects of
multiple parameters. As mc impacts most of the radargram
features, it is the easiest parameter to estimate, followed by d,
with r and φ being the most challenging. This hierarchy allows
us to use the more-information-related parameters as priors to
enhance the estimation of less-information-related parameters,
thereby reducing estimation uncertainties due to parameter
correlation. Therefore, in this work, we aim to build a deep
neural network model to map the relationship between the
characteristics of multi-polarimetric radargrams and rebar and
concrete parameters while alleviating parameter correlation to
improve the accuracy of parameter estimation.

III. METHODOLOGY

In this section, we present a novel network structure,
the MAPD-Net, to estimate multiple rebar parameters and

concrete moisture content. The MAPD-Net is composed of
the Multi-Polarimetric Feature Extraction-Aggregation Mod-
ule (MFEM) and Parameter Decorrelation-Estimation Module
(PDM), as shown in Fig. 3.

MFEM. Since different polarimetric radargrams (i.e., Sxx,
Sxy , Syx, Syy) carry complementary information of rebar
parameters as discussed in Section II, the MFEM is designed
to extract and aggregate the informative and complementary
features of each polarimetric radargram. The MFEM consists
of four paths to extract independent features from each po-
larimetric radargram and one path to extract complementary
features from concatenated radargrams. In each path, the
radargram is first forwarded to a residual block [18] to obtain
coarse features, followed by three consecutive operations of
a convolutional layer and a feature aggregation (FA) block,
along with two downsamping operations to refine the features.
Since a rebar with different parameters produces reflection
signature in different spatial regions in the radargram, an FA
block is designed to expand the receptive fields of the MFEM
and extract the multi-scale rebar reflection information.

The FA block adopts a three-branch feature extraction
mechanism, as shown in Fig. 4. In each branch, the input
feature maps are first passed through an average pooling
layer with different downsampling rates to obtain features in
different scales. They are then forwarded to a convolutional
layer followed by an upsampling operation to the original
dimensions. The upsampled feature maps from different sub-
branches are added up and then passed through another con-
volutional layer to obtain the final output feature maps. Since
a larger downsampling rate corresponds to a larger receptive
view, fusing the features of three different scales allows the FA
block to achieve a multi-scale receptive field. We would like to
note that the ”downsample-convolution-upsample” operation
in the FA block can be replaced with the dilated convolutions
without compromising network performance.

Next, the extracted features from the five paths are con-
catenated and forwarded to two residual blocks. The residual
blocks not only aggregate the polarimetric dependent features,
but also reduce the number of feature maps to alleviate the
computational burden. The output of the second residual block
is passed to the PDM for the estimation of multiple parameters.

PDM. The PDM is designed as a four-branch module to
simultaneously estimate the four parameters. As the output of
MFEM contains abundant features, and different parameters
have tighter connections with some features than others, it is
feasible to first highlight the informative features related to
the corresponding parameter, and then pass them to a fully
connected layer for parameter estimation. To this end, we
employ a channel attention (CA) block [19] in each branch to
emphasize informative features and suppress less useful ones.
After the CA module, the recalibrated features are processed
through a convolutional layer and then fed to two consec-
utive fully-connected layers to estimate the corresponding
parameter. As discussed in Section II, the influences of the
four rebar and concrete parameters on the radargrams are
tightly correlated, but some parameters, such as mc and d,
correspond to more information in radargrams, while others,
such as r and φ, are related to less information. Therefore, the
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Fig. 3. The framework of the MAPD-Net. It is composed of a Multi-
Polarimetric Feature Extraction-Aggregation Module (MFEM) to extract and
integrate informative features related to parameter estimation from the four
polarimetric radargrams, and a Parameter Decorrelation-Estimation Module
(PDM) to simultaneously estimate multiple rebar and concrete parameters. The
numbers shown in the figure indicate the numbers of output feature channels
or nodes.

Fig. 4. Illustration of the feature aggregation (FA) block. It comprises three
subbranches, each of which extracts features in different scales. The features in
all sub-branches are upsampled to the original dimensions and then combined
as the final output. The FA block effectively expands the receptive view of
the MFEM.

estimation difficulty and accuracy of these parameters differ
significantly. To tackle this issue, we specifically introduce pa-
rameter decorrelation (PD) flows to feed the more-information-
related parameters as priors to the estimation branches of
less-information-related parameters, as indicated by the red
dotted lines in Fig. 3. By doing so, the influence of more-
information-related parameters can be decoupled from the
features associated with less-information-related parameters,
thereby enhancing the estimation accuracy.

Loss Function. A multi-task loss function is used to drive
the optimization of the network, which is expressed as

L = Lmc + Ld + Lr + Lφ, (1)

where Lmc, Ld, Lr, and Lφ are the mean squared error
between the estimated value and the corresponding ground
truth of mc, d, r, and φ, respectively.

IV. EXPERIMENTS

A. Implementation Details of the MAPD-Net

To implement the MAPD-Net, we generate 3000 sets of data
for a rebar with different parameters using gprMax [17]. Each
set of data includes the radargrams of Sxx, Sxy , Syx, Syy ,
and the corresponding ground truth of mc, d, r, and φ. The
scenario is the same as the one shown in Fig. 1. Following the

Fig. 5. The histograms of estimation errors in rebar and concrete parameters.

parameter settings in [9], the moisture content of the concrete
is within the range of 0.2% to 12.0%, and the rebar cover
depth, radius, and orientation angle are within the range of
0 to 300 mm, 2 mm to 25 mm, and 0 to 179◦, respectively.
In each case, the rebar and concrete parameters are randomly
selected within their corresponding ranges. Other setups are
the same as those provided in Section II.

The 3000 sets of data are randomly divided into training
(80%) and testing (20%) sets. The radargrams are resized
to 128×24 and scaled to the range of [0, 1] based on the
maximum and minimum values of all the radargrams of each
polarization. The MAPD-Net is implemented using PyTorch
on an NVIDIA RTX 4090 GPU. The weights are initialized
with the standard Gaussian function. The batch size is set
as 20. The optimization of the network is performed using
the ADAM optimizer [20] with default parameters. The initial
learning rate is set as 0.0001 and decreases by a factor of 10
every 40 epochs. The model is trained for 200 epochs from
scratch.

B. Experimental Results of the Estimation Accuracy

The well-trained MAPD-Net is applied to estimate the
rebar and concrete parameters of the 600 testing data. The
histograms of estimation errors of mc, d, r, and φ are shown in
Fig. 5. 99% of data having an estimation error within ±0.3%
for mc, within ±5 mm for d, within ±2.5 mm for r, and
within ±5◦ for φ. The mean absolute errors (MAEs) of mc,
d, r, and φ in the 600 testing data are 0.06%, 0.8 mm, 0.4 mm,
and 1.0◦, respectively. Considering their different ranges, their
mean absolute percentage errors (MAPEs) are also calculated,
which are 2.2%, 1.1%, 3.8%, 4.4%, respectively. The low
MAEs and MAPEs on the testing data prove the network’s
capability in accurately estimating multiple rebar and concrete
parameters.

C. Ablation Study

Ablation study is conducted to demonstrate the effectiveness
of the key components of the MAPD-Net on the parameter
estimation accuracy. These components include the branches
of Sxy and Syx radargrams, the fifth branch of the cas-
caded multi-polarimetric radargrams, the FA block, the CA
block, and the PD flow. The mean absolute percentage errors
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TABLE I
COMPARISON OF PARAMETER ESTIMATION ACCURACY IN ABLATION STUDY (THE BEST RESULTS ARE HIGHLIGHTED IN BLUE.)

Networks A B C D E MAPD-Net
Sxy and Syx radargrams ✓ ✓ ✓ ✓ ✓

the fifth branch of the cascaded radargrams ✓ ✓ ✓ ✓ ✓
FA blocks ✓ ✓ ✓ ✓ ✓
CA blocks ✓ ✓ ✓ ✓ ✓
PD flows ✓ ✓ ✓ ✓ ✓

MAPE (mc) 2.3% 2.2% 3.5% 2.3% 2.2% 2.2%
MAPE (d) 1.3% 1.3% 2.0% 1.5% 1.6% 1.1%
MAPE (r) 6.0% 6.3% 6.1% 6.6% 7.2% 3.8%
MAPE (φ) 72.0% 5.9% 6.0% 6.4% 6.2% 4.4%

(MAPEs) of the ablation networks are presented in Table I.
Compared to the ablated networks, it is clear that the final
MAPD-Net achieves the highest estimation accuracy for each
parameter. The ablation study validates that by using multi-
polarimetric radargrams as inputs, implementing FA blocks
to extract features from different receptive fields, using CA
blocks to emphasize informative features related to each
parameter, and employing the PD mechanism to decouple
the parameters in the final estimation stage, the network
effectively establishes the relationship between the multi-
polarimetric radargrams and the rebar and concrete parameters,
and therefore achieves the highest estimation accuracy.

V. CONCLUSION

In this paper, we present a neural network structure, the
MAPD-Net, for estimating multiple rebar parameters and
concrete moisture content based on multi-polarimetric radar-
grams. MAPD-Net is specially designed with two modules
to extract informative features from multi-polarized radar-
grams and establish their relationship with rebar and concrete
parameters, thereby enabling accurate parameter estimation.
The introduction of PD flows within the network mitigates
the adverse effects of parameter correlation on estimation
accuracy. Numerical experiments verify that the MAPD-Net
estimates the four rebar parameters of interest with high
accuracy. This is the first work that takes into account the
rebar orientation while estimating other rebar parameters. The
automatic and accurate estimation of multiple rebar parameters
and concrete moisture content could facilitate the examina-
tion of structural integrity and quality control of reinforced
concrete buildings. Future work will focus on extending the
network’s effectiveness to measured rebar data in the field,
and using the method to monitor parameter changes in the
corrosion process. These efforts will potentially expand the
network’s applicability to corrosion damage evaluation and
structural health examination.
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