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Ground Penetrating Radar

% Ground penetrating radar (GPR) is a non-destructive tool that uses electromagnetic waves to inspect subsurface environments.
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Research Question

Most popular clutter removal methods

* Mean subtraction (MS) [1
(MY ‘, Can we leverage advantages of deep neural

« Subspace-based methods [2] ® networks to remove clutter in radargrams?

singular value decomposition (SVD)
principle component analysis (PCA)

Raw B-scan Clutter-free B-scan MS

[1] H. Brunzell, “Detection of shallowly buried objects using impulse radar, ” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 875-886, Mar. 1999.
” |EEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,

[2] R. Solimene, A. Cuccaro, A. Aversano, |. Catapano, and F. Soldovieri “Ground clutter removal in GPR surveys, . Sel. : :
vol. 7, no. 3, pp. 792-798, Mar. 2014. 3
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Methodology

’ How to use deep neural networks to remove clutter in radargrams?

— Nif;r;lk —)

Dataset preparation: build a large-scale dataset that contain diverse
clutter for network training

Neural network design: build suitable neural network architecture that
can be trained to effectively remove clutter and restore target responses

Selection of loss function: find suitable loss function to drive the
network optimization for the clutter removal task

—
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Dataset Preparation

Sub-dataset GPR system Subsurface environment Number of data
Six different soil conditions with

Synthetic sub-dataset 1.5-GHz GSSI system in gprMax four types of sail surfaces 1,920

Sand sub-dataset Multi-polarimetric GPR system Sandy sm‘] “flth uneven surface and 6,000
random distributed moisture content

Concrete sub-dataset Single-polarimetric GPR system with mono-static Concrete 4,000

and bi-static antenna configurations

Raw radargram Clutter-free radargram

~ ~

Data pair

The different GPR systems and subsurface environments in the dataset preparation provide diverse distributions of real-world
clutter. This allows the neural network to learn complex clutter distributions, thus improves the effectiveness of network in
removing clutter in real scenarios.
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Dataset Preparation: Simulated Dataset

Air
GSSI Antenna ___ Scan frace
5cm
PEC
PEC
Soil types Surface types Object types
Dry sand (¢, = 3.0, 0 = 0.001 S/m) Flat surface PEC pipe
Damp sand (¢, = 8.0, 0 = 0.01 S/m) Grass surface PVC pipe (¢, =3.5, 0 =0S/m)
Dry clay soil (¢, = 10.0, 0 = 0.01 S/m) Rough surface (different depths and radii)
Wet clay soil (¢, = 12.0, 0 = 0.01 S/m) Rough surface + water puddle
Dry loam soil (¢, = 10.0, 0 = 0.001 S/m)
Heterogeneous soil (¢, = 3.5 — 12.5, 0 = 0.01 — 0.07 S/m) 6
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Dataset Preparation: Simulated Dataset
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Measured Dataset: Sand Dataset
Concrete Dataset

Simulated Dataset
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Sand Dataset ! Concrete Dataset

I Mono-static setup

Bi-static setup

Keysight !n

Dual-polarized antenna
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Clutter-Removal Neural Network (CR-Net)
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Loss function

Dataset
}

Predicted clutter- Ground-truth clutter-
Raw B-scan free B-scany free B-scan y

H
e T L=

I--T } -?I-DEI
Loss = MAE (y, 9) + Lys-ssim (¥, 9)
* Mean absolute error loss « Multi-scale structural similarity loss
. 1 . M
MAE (9,9) = 7537 2_ i = 9 MS-SSIM (y, ) = [tar (1, )™ - T lew (w91 [ ()]
V) k=1

Lms-ssiv (¥, 9) = 1 — MS-SSIM (y, 3)
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Experimental Results

Raw B-scan Clutter-free B-scan MS CR-Net

GPR

Scan trace

Surface water

Rough surface

Heterogeneous soil

MAE (y,

WZI:%J i s

Methods CR-Net (ours)

MAE x 1074 59.62 47.82 7.59

The network outperforms the existing methods by a large margin in removing clutter and recovering target responses in the simulated data.

:. NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE



Experimental Results

Scenario Raw B-scan Processed B-scan

GPR
H—
7 cm
Scenario 1 .
metal can
sandy field
GPR
B §
® & o
Scenario 2 rebars
concrete

The network is highly effective in removing clutter and restoring object reflections
in field measured radargrams. 13
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Experimental Results

Scenario Raw B-scan Processed B-scan

GPR data were collected

Scenario 3[3]  on a concrete building;
the detail was not given.

202520
T

Scenario 4 [4]

eee Pipes O Concrete pipe
O Big blocks

The network enjoys good generalization capability in eliminating clutter in various real-world scenarios.
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Conclusion

A deep learning-based method is presented for clutter removal in GPR

radargrams.
l || Dataset ||
Predicted clutter- G d-truth clutter- . _ : : _

Raw B-scan free Bosean » e Boacany A large-scale dataset that contain diverse and complex real-world clutter

— H |_ ] for network training
" _ il * Neural network architecture to effectively remove clutter and restore

. ; . — target responses

R « Suitable loss function to drive the network optimization for the clutter

~N_ removal task

|Loss = MAE (y, §) + Lug.ssmm (v, ;e})l

The well-trained neural network enjoys great generalizability in removing
clutter and restoring target responses in real-world radargrams.

Dataset + Code: https://haihan-sun.github.io/GPR.html
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https://haihan-sun.github.io/GPR.html

Thank you!

Q&A
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